Page 1 of 1

Why Walking Relieves RLS Symptoms, Maybe

Posted: Mon Sep 21, 2015 4:09 am
by figflower
Here's a section of an article talking about the need for the release of dopamine from our brains and through the central nervous system (spine) in order to modulate and coordinate walking, climbing, swimming and in the middle of the second paragraph they make mention of RLS and how it is the result of a compromised dopaminergic system:

"Neuromodulators are the key ingredient allowing motor networks the flexibility to produce multiple patterns of output. When one considers a task such as stepping, a number of patterns need to be produced to run, walk, hop, go up and down inclines and walk in a circular pattern. While we focus on stepping in this review, neuromodulators contribute to the rhythmic operation of most, if not all, biological networks. A complete understanding of the role of neuromodulators in motor control must take into account the combinatorial effects of the complement of transmitters released both synaptically and extrasynaptically. This is an immense challenge for the field of motor control, especially when small invertebrate motor circuits are compared directly with their larger, less accessible and more complex mammalian cousins. However, in the last decade new genetic tools have become available that allow spinal circuits that compose a motor network to be identified (Goulding, 2009). In addition, the birth of optogenetics and pharmacogenetics has provided advanced tools for activating and inactivating neuromodulatory systems (Shapiro et al., 2012; Aston-Jones and Deisseroth, 2013). Even with these new tools it will still be a challenge to examine and comprehend the combinatorial role of multiple neurotransmitters, but the task is more tractable than it has been historically.

Although many neuropeptides, hormones or monoamines can modulate motor circuits, our review will focus on the role of dopamine. Dopamine plays an important role in the activation and modulation of the motor system across a wide range of invertebrate and vertebrate species (Harris-Warrick et al., 1998; Svensson et al., 2003; Puhl and Mesce, 2008; Miles and Sillar, 2011; Clemens et al., 2012; Lambert et al., 2012). In humans, movement disorders such as Parkinson’s disease and Restless Leg Syndrome provide prime examples of what can happen and how debilitating it can be for the individual when the dopaminergic system is compromised. Because of this, a large degree of effort has been focused on understanding the contribution and mechanisms of supraspinal dopamine to motor control. Considerably less attention has been paid towards the descending dopaminergic projections to motor networks in the spinal cord compared to the descending serotonergic and noradrenergic systems. We will discuss and contrast current knowledge of the descending dopaminergic system with the descending serotonergic and noradrenergic system in the control of locomotion in a variety of species, with particular focus on work conducted in the rodent."